Skip to main content

Output Characteristics of n - Channel MOSFET

Output Characteristics of n - Channel MOSFET

Objectives

  • To plot the output characteristics of n- channel MOSFET.
  • To compute the drain resistance

Experiment

  • Output characteristics indicate the variation of the drain current ($I_{D}$) with the drain to source voltage ($V_{DS}$) for different gate to source voltages ($V_{GS}$).
  • Wire up the ciruit in QUCS schematic editor as shown below.
  • Run the simulations and observe the output characteristics as shown below.
  • Select a characteristics and draw a tangent in the saturation region and compute the drain resistance as \begin{equation} r_{d}=\frac{\Delta V_{DS}}{\Delta I_{D}} \end{equation} for the given $V_{GS}$
  • Observations

    Drain resistance = $\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\,\Omega$

    What You Learned

  • You understood the output characteristics of $n-$ channel MOSFET.
  • Comments

    Popular posts from this blog

    RC Integrator and Differentiator using QUCS

    RC Integrator and Differentiator using QUCS Dr. Hari V S Department of Electronics and Communication College of Engineering Karunagappally What You will Learn You will understand the operation of simple integrator and differentiator circuits using QUCS You will learn the frequency response characteristics of integrator and differentiator by dint of ac simulation. Theory Differentiator is a high pass circuit that produces the time derivative of the input signal at the output. The circuit is shown below. \begin{equation} \nonumber v_{o}=I_{o}R=RC\frac{d(v_{s}-v_{o})}{dt}\\

    Generation of Signals using MATLAB/Python

    Generation of Signals using MATLAB/Python Dr. Hari V S Department of Electronics and Communication College of Engineering Karunagappally What You will Learn You will learn about various energy signals and their generation using MATLAB and python. Signal Generation using MATLAB MATLAB arrays are used to generate finite energy signals. It should be understood that the signals so generated are discrete in time and amplitude. Sinusoidal Signal Consider the sinusoidal signal $x=sin(t)$, which is nothing but a single tone, with the help of the MATLAB code below. t=linspace(0,10,5000); x=sin(t); plot(t,x); grid; The execution of the code will result in the signal, shown below. Amplitude Modulated Signal The above low frequency tone is used to modulate a sinusoidal carrier $y$ of ten times the original frequency. i.e. $y=sin(10t)$. The amplitude modulated signal $am(t)$ is obtained as \begin{equation} am(t)=x*y+y \end{equation}Su

    Voltage Divider Circuit using QUCS

    SPICE Simulation of Voltage Divider Dr. Hari V S Department of Electronics and Communication College of Engineering Karunagappally What You will Learn You will wire up a voltage divider network using QUCS You will learn to perform DC, AC and transient simulations on the developed circuit. you will learn to observe, store and export the data from the display ( .dpl ) file. Experiment Launch QUCS. Go to Components in the left pane and select the item Lumped Components . Drag and drop a resistor onto the schematic window. Right click on on to and go to Edit properties and make the resistance 1 k&#937 Right click, copy and paste this resistor twice. Connect the three resistors in series by wires, selected by pressing Cntrl+E . Go to Components in the left pane and select Sources &#8594 ac Voltage Source . Drag and drop the source onto the schematics window. Right click on the source and change